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The dynamic study of rotors is usually performed under a number of
assumptions, namely small displacements and rotations, small unbalance and
constant angular velocity. The latter assumption can be substituted by a known
time history of the spin speed. The present paper develops a general non-linear
model which can be used to study the rotordynamic behaviour of both "xed and
free rotors without resorting to the mentioned assumptions and compares the
results obtained from a number of non-linear numerical simulations with those
computed through the usual linearized approach. It is so possible to verify that the
validity of the rotordynamic models extends to situations in which fairly large
unbalances and whirling motions are present and, above all, it is shown that the
doubts forwarded about the application of a model which is based on constant spin
speed to the case of free rotors in which the angular momentum is constant have no
ground. Rotordynamic models can thus be used to study the stability in the small
of spinning spacecrafts and the insight obtained from the study of rotors is useful to
understand their attitude dynamics and its interactions with the vibration dynamics.
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1. INTRODUCTION

The dynamic study of rotors is usually performed under the assumptions of small
displacements and rotations. Moreover, the angular velocity is assumed to be
constant, or at least a known function of time. These assumptions allow a number
of linearizations of both the inertial and the elastic terms in the equations of
motion.

The assumptions of small displacements and rotations are retained even when
studying the behaviour of non-linear rotors, the non-linearities being usually
ascribed to bearings (of the #uid, rolling elements or even magnetic type), dampers
or other causes, as the presence of cracks.

Rotors are de"ned by ISO as bodies rotating about a "xed axis, constrained to
do so by cylindrical hinges. However, this is not in general necessary and there are
cases in which there are no constraints, as in the case of spinning spacecrafts or
celestial bodies, which can after all be considered as rotors. They are often de"ned
as &&free'' rotors, as opposed to the more conventional &&"xed'' rotors, supported in
bearings [1].
0022-460X/99/430611#35 $30.00/0 ( 1999 Academic Press
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While the presence of the bearings does not change the nature of the problem (in
the case of the Je!cott rotor it is possible to show that there is no di!erence between
the cases of a #exible rotor on sti! bearings or of a sti! rotor on compliant bearings,
at least if only the elasticity of the system is considered) the displacements can be far
greater in the case of &&free'' rotors and this makes the small displacements and,
above all, small rotations assumptions more problematic. Moreover, while in the
case of &&"xed'' rotors the spin speed is assumed to be constant (or, more generally,
a known function of time), free rotors are usually studied under the assumption of
constant angular momentum. So spinning spacecraft attitude dynamics and
rotordynamics are usually seen as two separate branches of dynamics, each one
with its own notation, distinctive approach and limitations [2}6].

Spacecraft attitude dynamics usually deals with single rigid bodies or with
multibody systems, in which the inertial properties of only one of them is
considered as relevant for the study of the dynamic behaviour of the spacecraft [5].
For the attitude and guidance control, the spacecraft is assumed to be a single
rigid body, with its #exible parts not a!ecting signi"cantly the overall dynamic
behaviour of the vehicle.

However, spacecrafts made of several bodies with relevant mass and moments of
inertia connected through very compliant structural element, as is the case
of recently proposed satellites for #ight experiments on fundamental physics
(MiniSTEP [7], GG [8]) and large space stations (ISS [9]), require a reconsidering
of this assumption. The low sti!ness (or better, the low value of the natural
frequency) causes the attitude dynamics to be coupled to the vibration
dynamics; such coupling can make the vibration isolation of the payload more
di$cult and, above all, can cause stability problems.

This issue is usually taken into account using multibody dynamics codes (for
example, DCAP code [10]), which are based on the numerical integration in time of
a complete nonlinear model of the system. They allow to simulate the spacecraft
attitude and vibration dynamics in detail, but this interaction is still di$cult to
investigate in a general way.

The experience in the "eld of conventional &&"xed'' rotors can help in
clarifying some of these aspects, provided that the consequences of the assumptions
of small displacements and, above all, of constant spin speed, which are usually
done in rotordynamics, are fully understood. In particular, there have been
claims that the violation of the conservation of the angular momentum linked
with the constant speed assumption of rotordynamics makes the models based
on the latter unable to study the stability of free rotors even in the small
[11].

The present authors studied the dynamics and the stability in the small of
a proposed satellite for a fundamental physics #ight experiment [12, 13], using the
conventional approach of linearized rotordynamics in previous papers [14]. An
interesting technical evaluation of the above proposal has been performed by
ESTEC, and published in reference [11].

These studies highlighted some critical issues.
The concepts of critical speeds and of self-centring, well known in the case of

supported rotors, apply as well to the multibody free rotors, due to the presence of
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elastic and damped connections between the carrier and the inner masses of the
system.

The role of damping (nonrotating, rotating, synchronous) on the stability of
multibody rotors can be fully understood only if studied with reference to a frame
"xed to the element in which the energy dissipation occurs. This is usually done for
"xed rotors, where non-rotating (statoric) elements are present, while it was often
neglected in the case of free rotors, where all parts typically rotate [5]. Stabilization
can occur by adding non-synchronous rotating damping [15], even if it is often
problematic from the practical point of view [11]. The authors propose to use
active dampers, which are able to synthesize non-rotating (or generally
non-synchronous) damping even if they are physically rotating together with the
rotor. Also gyroscopic e!ects play a relevant role on the attitude behaviour of the
spacecraft and in the coupling between attitude and vibration dynamics.

The aim of the present study is to clarify the above-mentioned issues,
investigating on the basic approximations typical of rotordynamics and on the
respective roles of the assumptions of constant speed and constant angular
momentum.

2. SINGLE-RIGID-BODY FIXED ROTOR

2.1. EQUATIONS OF MOTION

Consider a rigid body rotating about two cylindrical hinges located on one of its
principal axes of inertia (z-axis) and assume that the ellipsoid of inertia is round, i.e.,
its moments of inertia in a plane perpendicular to the rotation axis are equal
(Figure 1). Assume that the centre of mass G is not exactly coincident with point C,
located on the axis connecting the two bearings, and that its eccentricity e lies, for
simplicity, on its x-axis. This does not detract from the generality of the model, as
the body is axi-symmetrical. No couple unbalance is assumed. Let J

p
and J

t
be,

respectively, the moments of inertia about the baricentrical principal axis, which
Figure 1. Single-rigid-body "xed rotor; sketch of the system (a) and de#ected con"guration (b).
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coincides with the rotation axis but for the eccentricity e, and any axis in the
rotation plane.

Assume that the elastic and damping behaviour of the bearings is linear and
isotropic, with sti!ness k and damping c. This implies that the axial sti!ness is equal
to the radial one, but this does not constitute a limitation of the present model. If
the usual assumptions of small displacements and rotations are made, the lateral,
axial and torsional behaviours can be shown to be uncoupled and the former can be
studied by resorting to four degrees of freedom, which can be coupled two by two
in just two complex co-ordinates. The model coincides, apart from the couple
unbalance here neglected, with the four-degrees-of-freedom model described in
reference [16]. The dynamic study can be performed in the same way, but without
resorting to any linearization.

The reference frames, the choice of the six generalized co-ordinates and the
general equations of motion are described in Appendix A. Note that there is
a di!erence between the present approach and the one described in reference [16]:
to avoid overwhelming complexities in the di!erentiation of the kinetic energy, here
the generalized co-ordinates used to study translational motions are those of the
centre of mass G instead those of the geometrical centre of the shaft C.

By solving the last equation (A10) (see Appendix A) in hG , substituting it into the
"rst one, and stating that the body is axially symmetrical (J

x
"J

y
"J

t
), the "nal

form of the equations of motion is
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The generalized forces due to the bearings are readily obtained from equations
(A25)}(A30) (for the elastic terms) and from equation (A36) (for the damping terms),
remembering that the coordinates of the points in which the bearings are located on
the rotor (expressed in the rotor-"xed frame) are (Figure 1):

[!e 0 a]T, [!e 0 !b]T
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and those of the corresponding points of the stator are, in the inertial frame

[0 0 a]T, [0 0 !b]T .

It is easy to verify that equations (1) can be linearized, under the assumption of
small displacements X, > and Z, small rotations u

X
and u

y
while rotation h and the

spin speed hQ are arbitrary large, and small unbalance e, obtaining
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where

C"cC
2

a!b
a!b

a2#b2D, K"kC
2

a!b
a!b

a2#b2D.
Apart from the di!erences due to referring the equations of motion to point

G instead of point C, equations (2) are those commonly used in linearized
rotordynamics. It is easy to verify that the uncoupling between axial, torsional
and lateral behaviour holds and that the last equation states that the angular
velocity hQ is constant. In the linearized system there is no di!erence between
constant angular momentum and constant spin speed.

As the system is damped and unbalanced, there is energy dissipation in the
bearings (even if they are assumed to be frictionless) due to the whirling motion. If
this e!ect is accounted for, the last equation of motion becomes

hG#u2IMF1 T[u4(M!G)#iuC#K]~1FN"0, (3)

where the symbols are referred to the complex notation for steady state whirling as
described in reference [17]. The term expressing the rotordynamic drag in the
bearings is then quadratic in the eccentricity (included in vector F), which is a small
parameter, and hence in a linearized model it should be dropped. However, it will
be retained in the following numerical simulations to show the importance of such
phenomenon in practical applications.

2.2. NUMERICAL SIMULATIONS

The number of independent parameters involved in the equations of motion is
large and hence it is impossible to draw general conclusions: only a few numerical
simulations will be reported here.



TABLE 1

Some results of the simulation of the behaviour of a ,xed rotor with di+erent values of
the eccentricity and at di+erent speeds close to the critical speed. ¹he radius of the
orbit, the speed reduction *u in 1 s and the amplitude of the axial displacement

z
max

are reported

e u Orbit radius *u/u (in 1 s) z
max[km] [r.p.m.] [km] [km]

Linear Nonlin. Linear Nonlin. Linear Nonlin.

1 9000 28)8 28)8 0)94]10~6 1)12]10~6 0 1)14]10~4
9200 42)6 42)6 2)11]10~6 2)35]10~6 0 3)07]10~4

100 9000 2880 2880 6)8]10~3 7)7]10~3 0 1)14
9200 4260 4260 21)1]10~3 23)5]10~3 0 3)08

1000 9000 28 800 28 800 0)074 0)074 0 114
9200 45 500 44 200 0)094 0)108 0 308
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Consider a rigid rotor with the following characteristics: mass m"10 kg,
moments of inertia J

t
"0)1 kgm2, J

p
"0)15 kgm2, distances between the bearings

and the centre of mass a"100 mm and b"200 mm, sti!ness and damping of the
bearings k"5]106 N/m and c"100 Ns/m respectively. The linearized analysis
yields a single critical speed at 957)0 rad/s (9139 r.p.m.) and two natural frequencies
at standstill are equal to 921)2 rad/s (146)6 Hz) and 1628 rad/s (259)1 Hz).

Three values of the eccentricity were considered, namely e"1, 100 lm and
1 mm. Assuming a maximum speed of 20 000 r.p.m., they correspond to balancing
grades equal to 2, 200 and 2000: the "rst one is a fairly accurate balancing, as
common in gas turbines, the second is a rough balancing, as for crankshafts of car
engines, while the third is so rough not to be included in ISO 1940 standards.
Actually the last value, corresponding to an unbalance of 10 000 gmm, is too high
for any practical application; it has been chosen as a sort of limiting case.

The simulations were performed at speeds close to the critical speed, one slightly
lower (942)5 rad/s"9000 r.p.m.) and one slightly higher (963)4 rad/s"9200 r.p.m.).
A standard fourth order Runge}Kutta algorithm with adaptative timestep has been
used for all the simulations reported in the present paper. As stability problems
were never encountered, no attempt to improve the integration routine was
performed. Some typical results are reported in Table 1.

In the case of small unbalance (1 lm) the results from the non-linear model are
practically coincident with those obtained from the linearized theory. The slowing
down of the rotor is almost negligible, and close to that predicted by the linearized
model and the amplitude of the axial vibration is very small: the #exural-torsional
and #exural-axial coupling is then completely negligible.

Also in the case of the intermediate unbalance (100 lm) the results obtained are
still close to those obtained from the linearized model, as also shown by the increase
of the orbit radius which is proportional to the increase of eccentricity. The



Figure 2. Single-rigid-body "xed rotor; results of the numerical simulation with an eccentricity of
1 mm and initial speed of 9200 r.p.m. Time history of (a) lateral displacement in x-direction; (b) radius
of the orbit; (c) axial displacement, ** non-linear } } } linear and (d) spin speed.
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amplitude of the axial vibration is still negligible and the slowing down, although
no more negligible, is still small and close to that predicted by equation (3): the
#exural-torsional and #exural-axial coupling is still negligible.

With the largest value of the unbalance (1 mm) the rotor slows down at a quite
high rate as much energy is dissipated by the supports. When the initial spin speed
is higher than the critical speed the rotor slows down quickly and enters the
subcritical regime with a sudden drop in speed (see Figure 2, in which an initial
speed of 1000 rad/s has been assumed). The radius of the orbit oscillates in time
during the critical speed crossing as described in reference [17]. However, even in
this case, the time history of the lateral displacement is close to that computed using
the linearized model, and the amplitude of the axial displacement is small if
compared with that of the lateral one (about 0)26%), showing a very weak
#exural-axial coupling. The time history of the speed shows that a certain
#exural-torsional coupling is present, as the system undergoes some torsional
oscillations which are not predicted by the linearized model (equation (3)); however
the approximation of the linearized model is generally not bad even for the decrease
of speed. The time histories of the orbit amplitude computed using the nonlinear
and the linearized models cannot be compared directly, as they are much in#uenced
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by the decrease of the spin speed, but the latter model still yields reasonable results,
even if the amplitude is de"nitely very large.

The example shows that the usual linearized model is still applicable in case of
large unbalances and large whirling orbits. Note that the simulations have been
performed in the worst conditions, i.e., with an unrealistically high unbalance and
at speeds very close to the critical speed (in Figure 2 the critical speed is actually
crossed).

3. TWIN-RIGID-BODIES FREE ROTOR

3.1. EQUATIONS OF MOTION

Consider a free rotor made of two rigid bodies connected by springs and
dampers. Assume that the centres of mass of the two bodies are coincident in the
unde#ected position and that they are linked together by six linear springs and
viscous dampers arranged in the way shown in Figure 3. The values of the sti!ness
and the damping coe$cient of the links located on the x- and y-axis are equal, in
such a way that the system possesses axial symmetry. Also the inertial properties of
the two rigid bodies are axially symmetrical and, as a consequence, the equations of
motion of each one of them take the form of equation (1).

The two bodies are assumed to be perfectly balanced, i.e., the geometrical centre
of the connection system coincides with the mass centre and the principal axes of
inertia coincide with the principal axes of elasticity. By inspecting equation (1) and
computing the generalized forces through equations (A14)}(A23) and equation
(A36), it is possible to see that translational motions are uncoupled from rotational
ones in the linearized and semi-linearized models, while in case of the non-linear
one they are coupled only by the damping terms.

The general form of the 12 equations of motion is that of equations (1), written
with subscripts 1 and 2 for the generalized co-ordinates, forces and system
parameters. The generalized forces can be computed from the formulae reported in
Figure. 3. Twin-rigid-bodies rotor; position of the springs and dampers.
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Appendix A by simply introducing the co-ordinates of points P
1

and P
2

desumed
from Figure 3 (there are six pairs of such points) into the equations and adding the
results. For the forces due to the springs this procedure yields
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where a and b are the distances from the origin of the springs with sti!ness k and
k
t
respectively.
The expressions of the generalized forces due to the dampers are more complex

and the numerical simulations were performed using directly the expression of the
damping matrix given by equation (A33).

It is possible to assume that, while the rotations of each invidual body are
generally large, the di!erential rotations of one with respect to the other are small.
Also, the di!erential displacements can be considered small. A model based on this
assumption will be referred to as a semi-linearized model.

The generalized forces due to the springs and the dampers can now be computed
in closed form, obtaining
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A further linearization yields the usual equations of rotordynamics. Also in this
case, the two assumptions of constant spin speed and constant angular momentum
coincide in the linearized model. Also, the unstabilizing e!ect of rotating damping is
clearly present in the equations.

3.2 NUMERICAL SIMULATIONS

Owing to the large number of independent parameters, the only way to compare
the results obtained through the full equations, the semi-linearized and the fully
linearized approach is to perform a very large number of numerical simulations.
Only four cases are reported here, to obtain some indications which can be shown
to yield a good qualitative understanding of the e!ect of such assumptions. In all
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cases, the values of the damping coe$cients have been chosen in such a way that
the rotational #exural and torsional vibrations are characterized by a damping
ratio f"0)1 (quality factor Q+5). The relevant data are listed in Table 2.

The main results of the linearized analysis are reported in Tables 3 and 4,
separately for translational and rotational modes, which are decoupled. The rotor
has been considered at standstill and spinning at 1000 rad/s. Cases n"1 and 2 refer
to free rotors with polar moment of inertia larger than the transversal moment of
inertia. As a consequence they have no critical speeds related to rotational modes,
which are stable in the whole spin speed range.

Case 1 refers to a rotor with a sti! connection between the two bodies, i.e., with
#exural natural frequencies at standstill far higher than the maximum spin speed.
The linearized results at 1000 rad/s show that the rigid-body conical precessional
motion, occurring at 1450 rad/s (i.e., at the frequency uJ

p
/J

t
) is completely

uncoupled from the mode involving relative motions of the two parts of the system.
The former is very little damped, with a decay rate of about 10~8 1/s while the
second one is very much damped (decay rate of 1386 1/s) and its frequency is not
much a!ected by the spin speed up to above 1000 rad/s. Also the translational
mode is always damped in the whole speed range considered.

The results of a numerical simulation performed using the non-linear, the
semi-linearized and the fully linearized models are reported in Figure 4. All initial
generalized displacements and velocities are equal to zero, except for u

yÇ
"0)12

rad; u
yÈ
"0)08 rad; uR

XÇ
"uR

XÈ
"!145 rad/s; hQ

1
"hQ

2
"1000 rad/s. Note that the

displacements remain vanishingly small as the coupling terms of the damping
matrix depend linearily on the displacements and hence the initial conditions
assumed make them remain equal to zero for the whole integration time. The result
is a whirling motion with a peak to peak amplitude of about 0)2 rad (more than 103)
in which the two bodies move together, after a short transient in which the
oscillations of one relative to the other are quickly damped out. The frequency of
the motion resulting from the non-linear and semi-linearized models is of 1436
and of 1450 rad/s (coinciding with that obtained from the frequency domain
computation) obtained from the linearized model. The latter di!er from the former
by less than 1% even if the amplitude of the motion is quite large. Note the quick
damping of di!erential motions of the two bodies while the overall whirling of the
system is almost undamped; the oscillations in the angular velocity dh/dt show
clearly the lateral-torsional coupling, not predicted by the linearized model; such
coupling is however not strong even if the amplitude is large and does not a!ect the
lateral behaviour. Figure 4(d) shows that the energy dissipation due to the damping
of the di!erential oscillations is large but the results of the fully non-linear solution
almost coincide with those of the semi-linearized solution.

The results shown in Figure 4 support the claim that the linearized solution is
still accurate in predicting the lateral behaviour even at amplitudes as large as 103
(peak to peak) and that the torsional-lateral coupling is not too strong.

Case 2 deals with a rotor having the same inertial properties of the previous one,
but with a very soft connection. The translational mode is a supercritical one (i.e.,
the corresponding whirl speed is smaller than the spin speed or, in other words, the
spin speed is higher than the critical speed related to the translational mode) and



TABLE 2

Data for the four cases studied through numerical integration. K"2k#4k
t
, C"2c#4c

t
, s"2(ka2#k

t
b2) and C"2(ca2#c

t
b2)

are the sti+ness and damping coe.cients for linearized -exural translations and rotations

Case m J
p

J
t

a"b k"k
t

c c
t

K C s C
n. [kg] [kgm2] [kgm2] [m] [N/m] [Ns/m] [Ns/m] [N/m] [Ns/m] [Nm/rad] [Nms/rad]

1 20 0)015 0)010 0)25 4]106 45)1 68 24]106 362)2 1]106 14)14
20 0)014 0)010

2 20 0)015 0)010 0)25 2000 1)01 1)52 12 000 8)1 500 0)316
20 0)014 0)010

3 20 0)010 0)015 0)25 4]106 79)5 56)6 24]106 385)6 1]106 17)02
20 0)010 0)014

4 20 0)010 0)015 0)25 4000 2)51 1)79 24 000 13)6 1000 0)538
20 0)010 0)014
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TABLE 3

Results for the linearized analysis of the four free rotors described in ¹able 2;
translational modes. ¹he -exural and torsional natural frequencies j

n
(which are

themselves coincident) coincide with the critical speed u
cr

of the undamped system,
owing to the decoupling between translational and rotational modes. ¹he complex
eigenfrequencies at standstill (j(u"0)) and the complex whirl speed at a spin speed of
1000 rad/s for backward and forward whirling j

B
(u"1000), j

F
(u"1000) are also

reported. Only the values di+erent from zero are reported

Case j
n
"u

cr
j(u"0) j

B
(u"1000) j

F
(u"1000)

n. [rad/s] [rad/s] [rad/s] [rad/s]

1 1550 1549#18.1i 1549#29)8i 1549#6)4i
2 34)64 34)64#0)41i 36)38#11)5i 36)38!10)7i
3 1550 1549#19)13i 1549#31)7i 1549#6)8i
4 48)99 48)99#0)68i 50)78#14)1i 50)78!12)7i
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the linearized analysis shows that it is unstable. Owing to the uncoupling, the
rotational modes are however subcritical as there is no critical speed linked to
rotational degrees of freedom.

The linearized results at 1000 rad/s show that the rigid-body precessional motion
occurs at 1425 rad/s (i.e., at a frequency slightly lower than uJ

p
/J

t
) and is strongly

coupled to the forward mode involving relative motions of the two parts of the
system, which occurs at 1541 rad/s. As a result, both modes are very strongly
damped, with decay rates of the order of 4 and 17 1/s. The presence of the damper
between the two bodies causes not only the di!erential motions to die out quickly,
but also the overall whirling to decay. The results of a numerical simulation
performed using the non-linear, the semi-linearized and the fully linearized models
are reported in Figure 5. The initial conditions are the same as in the previous
example, except for uR

XÇ
"uR

XÈ
"!142)5 rad/s. The result is a decaying whirling

motion with an initial peak to peak amplitude of about 0)2 rad (more than 103).
Note that the instability of the translational mode would, in an actual case, drive to
instability also the rotational one; this e!ect is not accounted for in the simulation
owing to the initial displacements and velocities which have been assumed to be
exactly equal to zero.

The time history of angles u
X
i

and u
y
i

shows that a sort of beat is present, owing
to the fact that two natural frequencies are quite close. The overall motion is
damped. Figure 5(c), related to the spin speed of the rotor dh

i
/dt, shows that

a lateral-torsional coupling, not predicted by the linearized model, is again present
but is not very strong even if the amplitude is large and does not a!ect the lateral
behaviour. The plot of the time history of the total and kinetic energy shows that
the fully non-linear solution gives results which are quite di!erent from the
semi-linearized solution; the di!erence between the two is however magni"ed
by the very expanded scale and the relative error is still quite small. Except for
this last result, the fully non-linear solution is completely superimposed on the



TABLE 4

Results for the linearized analysis of the four free rotors described in ¹able 2; rotational modes. ¹he -exural and torsional natural
frequencies j

n
and j

n
t

and the critical speed u
cr

of the undamped system are reported together with the complex eigenfrequencies at
standstill (j(u"0)) and the complex whirl speed at a spin speed of 1000 rad/s for backward and forward whirling j

B
(u"1000),

j
FÇ

(u"1000) and j
FÈ

(u"1000). Only the values di+erent from zero are reported

Case j
n

j
n
t

u
cr

j (u"0) j
B
(u"1000) j

FÇ
(u"1000) j

FÈ
(u"1000)

n. [rad/s] [rad/s] [rad/s] [rad/s] [rad/s] [rad/s] [rad/s]

1 14 140 11 751 * 14 071#1414i 13 360#1442i 1450#1)15]10~8i 14 815#1 386i
2 316 263 * 315#31)6i 65)5#42)6i 1425#3)9i 1541#16)6i
3 11 751 14 140 21 213 11 692#1 175i 11 352#1 241i 690!1)49]10~9i 12 043#1 109i
4 372 447 671 369)8#37)2i 163#85i 687!0)44i 857!10)3i
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Figure 4. Twin-rigid-bodies rotor; results of the numerical simulation for case 1. Time history of (a)
angles u

X
i

; (b) angles u
y
i

; (c) spin speed of the two rotors dh
i
/dt and (d) total and kinetic energy.**

non-linear, } } } semi-linear, ) ) ) ) linear (only in a and b). The plots are related to di!erent time
intervals.
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semi-linearized solution and the linearized model yields similar results, but
overestimates the frequency by about 1%.

To investigate the discrepancies between the time history of the total and kinetic
energy computed using the non-linear and semi-linearized solutions the simulation
has been repeated with initial conditions on the displacements and velocities
(except the spin speed) divided by 10 (Figure 6). The peak-to-peak amplitude is now
of about 13 and the results of the two models are very close to each other.

Cases 3 and 4 deal with rotors with a polar moment of inertia smaller than the
transversal one (long rotors). In this case two critical speeds are present, one linked
to the rotational and one to the translational mode. The rotor of case 3 has a very
sti! connection between the bodies and operates at the nominal speed (1000 rad/s)
in the subcritical regime, while that of case 4, whose springs are far softer, at the
same speed operates in supercritical conditions for both modes. The linearized
analysis shows that the former is very weakly unstable in the small: the imaginary
part of the whirl speed of the "rst forward mode is negative, but its absolute value is
so small (1)49]10~9 1/s) that a very long time is expected to be needed to develop
an actual unstable behaviour. This type of behaviour is typical of all free rotors in
which J (J .
p t



Figure 5. Same as Figure 4, but for case 2.

Figure 6. Same as Figure 5(d), but for an amplitude of the motion divided by 10.
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The rigid-body precessional motion, occurring at 690 rad/s (i.e. at the frequency
uJ

p
/Jt) is completely uncoupled from the mode involving relative motions of the

two parts of the system. The former is slightly unstable, as said above, while the
second one is very much damped and its frequency is not much a!ected by the spin



Figure 7. Same as Figure 4, but for case 3.
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speed. The results of a numerical simulation performed using the non-linear, the
semi-linearized and the fully linearized models are reported in Figure 7. The initial
conditions are the same as for the previous cases, except for uR

XÇ
"uR

XÈ
"

!69 rad/s. The result is a whirling motion with a peak to peak amplitude of about
0)2 rad (more than 103) in which the two bodies move together, after a short
transient in which the oscillations of one relative to the other are quickly damped
out.

Figure 7(b) shows that the buildup of the amplitude is so slow that the time
history is practically coincident with that of an undamped system. From Figure 7(d)
it is clear that the time history of the total and kinetic energy computed using the
fully non-linear solution is almost superimosed on the semi-linearized solution as in
case 1.

The linearized analysis shows that the rotor of case 4 is very unstable in all
forward modes, particularly in the translational and second rotational ones. How-
ever, also the "rst rotational forward mode is quite unstable, possibly owing to the
closeness of the two rotational modes.

The results of a numerical simulation performed using the non-linear, the
semi-linearized and the fully linearized models are reported in Figure 8. The initial
conditions are the same as for case 3. The result is a whirling motion with an initial
peak to peak amplitude of about 0)2 rad (more than 103); the amplitude quickly



Figure 8. Same as Figure 4, but for case 4.
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grows to very large values. Note that in practice the instability of the translational
modes would add to that of the rotational modes owing to the coupling which
would start as soon as the amplitude of the former starts to be non-negligible.

The time history of the total and kinetic energy shows that in this case, as in case
2, the non-linear solution gives results which are not in good accordance with the
semi-linearized solution, but the same considerations on the smallness of the
relative error still hold.

To show the e!ects of the non-linearities due to large amplitudes, the simulation
for case 2 has been repeated with initial conditions with larger values of u

y
i

and uR
X
i

:
u
yÇ
"0)48 rad; u

yÈ
"0)32 rad; uR

XÇ
"uR

XÈ
"!570 rad/s (Figure 9).

Owing to the very large amplitude (about 603 peak to peak), the linearized
solution gives results which are quantitatively uncorrect, while being still
qualitatively correct. The semi-linearized solution, is on the contrary quite reliable
in predicting the behaviour of the system, except for the kinetic energy, as it was
already noted in Figure 5.

4. CONCLUSIONS

A general mathematical model for multi-degrees-of-freedom rotors which does
not rely on the usual assumptions of small displacements and rotations and on
assumptions on the angular velocity has been obtained using the same generalized



Figure 9. Same as Figure 5 (case 2), but with di!erent initial conditions. The very large amplitude
makes the linearized solution incorrect, while the semi-linearized one retains its applicability.
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co-ordinates and overall approach common in rotordynamics. The model reduces
to the classical formulation if the motion in the small is considered.

The formulation here described is applicable to free rotors and constitutes
a bridge between classical rotordynamics and multibody spinning spacecraft
dynamics, showing that, in spite of the di!erent approach and traditional notation
in the two "elds, they actually deal with the same physical phenomena.

The complexity of the equations reported in Appendix A should not confuse the
reader: their numerical integration is straightforward. As they deal with a non-
linear problem, a closed-form solution cannot be achieved even with a di!erent
choice of the generalized co-ordinates, and the present approach has the advantage
of using co-ordinates which have an immediate and intuitive physical meaning.

A number of numerical simulations have been performed, some of which are
reported here, allowing one to draw the following conclusions.

f The assumption of constant angular velocity can be obtained from that of
constant angular momentum, typical of free-rotor dynamics, when small
amplitude motion is considered. The stability considerations drawn from
classical rotordynamic analysis hold for the study of the stability in the small of
free rotors and spacecrafts.

f The axial and torsional motions are coupled with the lateral behaviour of
the rotor. However, this coupling becomes vanishingly small with reducing
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amplitude of the latter (for the torsional motion this statement can be seen as
a consequence of the previous point). The axial-#exural and torsional-#exural
decoupling is then applicable to the motion in the small to both "xed and free
rotors.

f The linearized analysis holds with good precision to motions occurring with
angular amplitudes up to several degrees. This allows one to use the classical
linearized rotordynamic approach to the study of all "xed rotors (which is fairly
obvious) but also in general to free rotors, at least if they are provided with an
attitude control system (which can be introduced into the model), which prevents
large amplitude motions from occurring.

f In the case of multibody or discretized compliant systems, it is possible to resort
to what has been here referred to as a semi-linearized model, in which the
displacements of each body (generalized co-ordinates for the attitude motions)
are unbounded, while the relative displacements are considered as small. Such
semi-linearized model allows one to study the motion with large amplitudes of
complex systems with good precision, provided that the connections between the
various bodies are sti! enough to prevent large relative motions or that the
amplitude of relative motions is restricted in some other way.
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APPENDIX A

A.1. REFERENCE FRAMES AND GENERALIZED CO-ORDINATES

The six generalized co-ordinates needed to describe the motion of the spinning
rigid body in the tri-dimensional space can be de"ned with reference to the
following frames (Figure 10).

f Frame OX>Z: Inertial frame. In the case of a &&"xed'' rotor (Figure 1), Z-axis can
coincide with the rotation axis in the unde#ected position and the origin O can be
located in the centre of gravity of the rotor (always in the unde#ected position). In
the case of &&free'' rotors, the position and the orientation of the inertial frame is
immaterial.

f Frame Gxyz with origin in the centre of gravity of the rotor G and "xed to it;
z-axis coincides with the principal axis of inertia which is close, apart from the
small misalignement which causes the couple unbalance, to the rotation axis of
the rigid body in the deformed position and x- and y-axis are de"ned by the
following rotations:
* Rotate the axes of OX>Z frame about the X-axis of an angle u

X
until the

>-axis enters the rotation plane of the rigid body in its deformed
con"guration. Let the axes so obtained be the x*-, y*- and z*-axis. The
rotation matrix allowing one to express the components of a vector in the
rotated frame from those referred to the inertial frame, is

R
1
"

1 0 0
0 cos(u

X
) sin(u

X
)

0 !sin(u
X
) cos(u

X
)

. (A1)
Figure 10. Reference frames.
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* Rotate the Gx*y*z* frame about the y*-axis until the x*-axis also enters the
rotation plane of the rigid body. Let the axis so obtained be the x**-axis and
the rotation angle be u

y
. After the two mentioned rotations, the z**-axis

coincides with the symmetry axis of the rigid body in its deformed
con"guration. Let the matrix expressing this second rotation be

R
2
"

cos(u
y
) 0 !sin(u

y
)

0 1 0
sin(u

y
) 0 cos(u

y
)

. (A2)

* Further rotate the Gx**y*z** frame in the x**y* plane of an angle equal to
the rotation angle h of the rotor due to the spin speed. Frame Gxyz is actually
"xed to the rigid body; the matrix allowing one to express a vector in the
G xyz frame from the components in the Gx**y*z frame is

R
3
"

cos(h) sin(h) 0
!sin(h) cos(h) 0

0 0 1
. (A3)

Take the X-, >- and Z-co-ordinates of point G and angles u
X
, u

y
, and h as

generalized co-ordinates of the rigid body.

A.1.1. Kinetic energy and equations of motion

To compute the kinetic energy of the rigid body, the velocity of the center of
gravity (point G) and the angular velocity expressed in the principal system of
inertia must be computed. The position of point G is obviously

(G!O)"[X > Z]T. (A4)

The translational kinetic energy is then

T
t
"1

2
m<2

G
"1

2
m (XQ 2#>Q 2#ZQ 2). (A5)

For the computation of the rotational kinetic energy, the angular velocity must
be expressed in the principal reference frame of the rotor. The three components of
the angular velocity can be considered vectors acting in di!erent directions:
uR
X

along the X-axis, uR
y
along the y*-axis, and hQ along the z-axis. Using the relevant

rotation matrices, the components of the angular velocity along the principal axes
of inertia of the rotor are

X"R
3
R

2G
uR

X
0
0 H#R

3G
0
uR

y
0 H#G

0
0
hQ H . (A6)

Without resorting to small angles assumptions, equation (A6) reduces to

X"G
uR
X

cos(h) cos(u
y
)#uR

y
sin(h)

!uR
X
sin(h) cos(u

y
)#uR

y
cos(h)

uR
X

sin(u
y
)#hQ H . (A7)
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As the components of X are referred to the principal axes of inertia, the
rotational kinetic energy can be easily computed as

T
r
"1

2
J
x
[uR

X
cos(h) cos(u

y
)#uR

y
sin(h)]2

#1
2

J
y
[!uR

X
sin(h) cos(u

y
)#uR

y
cos(h)]2#1

2
J
z
[uR

X
sin(u

y
)#hQ ]2 . (A8)

The equations of motion can be obtained as usual through the Lagrange
equation. The generalized forces Q

i
to be included in the equations of motion will

be obtained when the potential energy and the dissipation function will be de"ned.
By performing the relevant derivatives, the six equations of motion are obtained

mXG "Q
X
, m>G "Q

Y
, mZG"Q

Z
, (A9)

M[J
x
cos2(h)#J

y
sin2(h)] cos2(u

y
)#J

z
sin2 (u

y
)NuK

X
#(J

x
!J

y
) sin(h) cos(h) cos(u

y
) uK

y

#J
p
sin(u

y
)hG!2(J

x
!J

y
) sin(h) cos(h) cos2 (u

y
)hQ uR

X

#M(J
x
!J

y
)[cos2(h)!sin2 (h)]#J

z
N

]cos(u
y
)hQ uR

y
!2M[J

x
cos(2(h)#J

y
sin2 (h)]!J

z
N cos(u

y
) sin(u

y
)uR

X
uR

y

!(J
x
!J

y
) sin(h) cos(h) sin(u

y
)uR 2

y
"QrX

,

[J
x
sin2(h)#J

y
cos2 (h)]uK

y
#(J

x
!J

y
) sin(h) cos(h) cos(u

y
)uK

X

#2(J
x
!J

y
) sin(h) cos(h)hQ uR

y

#M(J
x
!J

y
)[cos2(h)!sin2 (h)]!J

z
N cos(u

y
)hQ uR

X
#[J

x
cos2 (h)#J

y
sin2 (h)!J

z
]

]cos(u
y
) sin(u

y
)uR 2

X
"Qr

y

,

J
p
hG#J

p
sin(u

y
)uK

X
!M(J

x
!J

y
)[cos2(h)!sin2(h)]!J

z
N cos(u

y
)uR

y
uR

X

#(J
x
!J

y
) sin(h) cos(h) cos2 (u

y
)uR 2

X
!(J

x
!J

y
) sin(h) cos(h)uR 2

y
"Qh . (A10)

A.2. POTENTIAL ENERGY AND GENERALIZED FORCES

Consider two rigid bodies, referred to as body 1 and body 2, connected by
a linear spring (Figure 3). Let the end point of the spring connected with body
1 (point P

1
) have co-ordinates x

1
y
1
z
1

in the reference frame "xed to the latter and
the other end point (point P

2
) have co-ordinates x

2
y
2
z
2

in the reference frame "xed
to the other body. Their co-ordinates in the inertial frame are

(P
i
!O)"RT

1
i

RT
2
i

RT
3
i G

x
i

y
i

z
i
H#G

X
i
>

i
Z

i
H , (A11)

for i"1, 2.
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The potential energy stored in the spring of sti!ness k is

U"1
2

k[(P
1
!O)!(P

2
!O)]T [(P

1
!O)!(P

2
!O)]. (A12)

Equation (A12) can be expanded to

U"1
2

kA(X1
!X

2
)2#(>

1
!>

2
)2#(Z

1
!Z

2
)2#x2

1
#y2

1
#z2

1
#x2

2
#y2

2
#z2

2

#2(X
1
!X

2
)[cos(h

1
) cos(u

yÇ
)x

1
!sin(h

1
) cos(u

yÇ
)y

1
#sin(u

yÇ
)z

1

!cos(h
2
) cos(u

yÈ
)x

2
#sin(h

2
) cos(u

yÈ
)y

2
!sin(u

yÈ
)z

2
]

#2(>
1
!>

2
)[cos(h

1
) sin(u

yÇ
) sin(u

xÇ
)x

1
#sin(h

1
) cos(u

xÇ
)x

1

!sin(h
1
) sin(u

yÇ
) sin(u

xÇ
)y

1
#cos(h

1
) cos(u

xÇ
)y

1
!cos(u

yÇ
) sin(u

xÇ
)z

1

!cos(h
2
) sin(u

yÈ
) sin(u

xÈ
)x
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In the case of a spring constraining body 1 to a body stationary in the inertial
frame, the expression of the potential energy reduces to

U"1
2

k(X2
1
#>2

1
#Z2

1
#x2

1
#y2

1
#z2

1
#x2

0
#y2

0
#z2

0
#2X

1
[cos(h

1
) cos(u

yÇ
)x

1

!sin(h
1
) cos(u

yÇ
)y

1
#sin(u

yÇ
)z

1
!x

0
]#2>

1
[cos(h

1
) sin(u

yÇ
) sin(u

xÇ
)x

1

#sin(h
1
) cos(u

xÇ
)x

1
!sin(h

1
) sin(u

yÇ
) sin(u

xÇ
)y

1
#cos(h

1
) cos(u

xÇ
)y

1

!cos(u
yÇ

) sin(u
xÇ

)z
1
!y

0
]#2Z

1
[!cos(h

1
) sin(u

yÇ
) cos(u

xÇ
)x

1

#sin(h
1
) sin(u

xÇ
)x

1
#sin(h

1
) sin(u

yÇ
) cos(u

xÇ
)y

1

#cos(h
1
) sin(u

xÇ
)y

1
#cos(u

yÇ
) cos(u

xÇ
)z

1
!z

0
]!2cos(h

1
) cos(u

yÇ
)x

1
x
0

#2[!cos(h
1
) sin(u

yÇ
) sin(u

xÇ
)!sin(h

1
) cos(u

xÇ
)]x

1
y
0

#2[cos(h
1
) sin(u

yÇ
) cos(u

xÇ
)!sin(h

1
) sin(u

xÇ
)]x

1
z
0

#2sin(h
1
) cos(u

yÇ
)y

1
x
0
#2[sin(h

1
) sin(u

yÇ
) sin(u

xÇ
)!cos(h

1
) cos(u

xÇ
)]y

1
y
0

!2[sin(h
1
) sin(u

yÇ
) cos(u

xÇ
)#cos(h

1
) sin(u

xÇ
)]y

1
z
0

!2 sin(u
yÇ
)z

1
x
0
#2 cos(u

yÇ
) sin(u

xÇ
)z

1
y
0
!2 cos(u

yÇ
) cos(u

xÇ
)z

1
z
0
) (A24)

The generalized forces are then
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A.3. RAYLEIGH DISSIPATION FUNCTION

Consider a linear viscous damper located between the two rigid bodies, with end
points in point P

1
(located on body 1) and P

2
(on body 2). Assuming that the

element in which the energy dissipation occurs moves together with body 1, the
generalized damping forces can be computed from the Rayleigh dissipation
function
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Recalling equation (A11), the distance (P
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By di!erentiating equation (A11) with respect to time and introducing it into
equation (A31), the following expression of the Rayleigh dissipation function is
readily obtained:
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In the case of a damper located between point P
1

(located on body 1) and point
P
0
"xed to the inertial frame, assuming that the element in which the energy

dissipation occurs is stationary in the latter, the Rayleigh dissipation function is

F"1
2
c (P

1
!P

0
)0 T (P

1
!P

0
)0 (A34)

where the relative velocity of points P
1

and P
0

is referred to the inertial frame.
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Remembering equation (A11), the distance (P
1
!P

0
) can be expressed as

(P
1
!P

0
)"RT

1Ç
RT

2Ç
RT

3ÇG
x
1

y
1

z
1
H#G

X
1
>

1
Z

1
H!G

x
0

y
0

z
0
H . (A35)

Operating as above, the vector of the generalized coordinates is

q"[X
1
>

1
Z

1
u
xÇ

u
xÇ

h
1
]T,

and matrix C is easily computed

C"c

1 0 0 VTI
1

WTI
1

PTI
1

1 0 VTI
2

WTI
2

PTI
2

1 VTI
3

WTI
3

PTI
3

VTV WTV PTV
Symm. WTW PTW

PTP

,

where

V"cT
1
RT

2Ç
RT

3ÇG
x
1

y
1

z
1
H, W"RT

1Ç
bT
1
RT

3ÇG
x
1

y
1

z
1
H, P"RT

1Ç
RT

2Ç
aT
1G

x
1

y
1

z
1
H

and I
1
, I

2
, and I

3
are the "rst, second and third columns of the identity matrix,

respectively.
In both cases, the generalized forces due to damping to be inserted in the

equations of motion are

Q"!Cq5 . (A36)

APPENDIX B: NOMENCLATURE

c damping coe$cient
k sti!ness
i imaginary unit (i"J!1)
m mass
q coordinate vector
t time
C damping matrix
F unbalance force vector
F Rayleigh dissipation function
G gyroscopic matrix
K sti!ness matrix
J moment of inertia
M mass matrix
R rotation matrix
T kinetic energy
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Q generalized force
U potential energy
e eccentricity
f damping ratio
j whirl speed
u spin speed
X angular velocity
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